skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "and Topcu, Ufuk"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We consider the problem of minimizing a smooth, Lipschitz, convex function over a compact, convex set using sub-zerothorder oracles: an oracle that outputs the sign of the directional derivative for a given point and a given direction, an oracle that compares the function values for a given pair of points, and an oracle that outputs a noisy function value for a given point. We show that the sample complexity of optimization using these oracles is polynomial in the relevant parameters. The optimization algorithm that we provide for the comparator oracle is the first algorithm with a known rate of convergence that is polynomial in the number of dimensions. We also give an algorithm for the noisy-value oracle that incurs sublinear regret in the number of queries and polynomial regret in the number of dimensions. 
    more » « less
  2. null (Ed.)
    In planning problems, it is often challenging to fully model the desired specifications. In particular, in human-robot interaction, such difficulty may arise due to human's preferences that are either private or complex to model. Consequently, the resulting objective function can only partially capture the specifications and optimizing that may lead to poor performance with respect to the true specifications. Motivated by this challenge, we formulate a problem, called diverse stochastic planning, that aims to generate a set of representative---small and diverse---behaviors that are near-optimal with respect to the known objective. In particular, the problem aims to compute a set of diverse and near-optimal policies for systems modeled by a Markov decision process. We cast the problem as a constrained nonlinear optimization for which we propose a solution relying on the Frank-Wolfe method. We then prove that the proposed solution converges to a stationary point and demonstrate its efficacy in several planning problems. 
    more » « less